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The rapid increase in the collection of population samples of molecular sequences, plus the great
expansion of the use of microsatellite markers, makes it possible to investigate the patterns and
rates of migration among geographically subdivided populations with much greater power than
was previously possible. The difficulty with methods for analyzing these data has been that they
do not allow the researcher to observe the genealogical tree of ancestry of the sampled sequences,
but only make an estimate of it which has a great deal of uncertainty. Taking the uncertainty in our
estimate of the genealogy into account is the major challenge for a proper statistical analysis of
these data. The statistical approach of maximum likelihood is used to infer these rates and patterns,
using the Markov Chain Monte Carlo (MCMC) method of computing the likelihoods. This method
samples genealogies from the space of possible genealogies, using an acceptance-rejection method
to concentrate the sampling in the regions which contribute most to the outcome. Even though the
number of possible genealogies is vast, the MCMC sampling can avoid wasting computer time
on possibilities that can have made little contribution to the observed outcome. This sampling of
different genealogies in computing a likelihood for the parameters correctly accounts for our lack
of knowledge of the true gene tree.

It can be shown that these ML-methods are superior to methods based on FST. Additionally,
ML-methods can take into account variability in mutation rate and can estimate all relevant popu-
lation parameters jointly and also analyze cases with different population sizes and migration rates.
Comparison of different data types reveals that number of loci sampled is a key factor in reducing
the variability of the parameter estimates.



The coalescent

Most current population genetics analyses are using theoretical findings of Sewall Wright and
R. A. Fisher which were made in the early 20th century. Their work is based on a view which
uses discrete generations of idealized individuals pass-
ing their genes to offspring in the next generation. This
“looking forward” strategy implies that calculation of the
probability of a given genotype is rather difficult. King-
man (1982a,b) formalized a “looking backward” strategy:
the coalescent. Hudson (1990) and Donnelly and Tavaré
(1997) give comprehensive reviews on the subject. Co-
alescence theory takes the relatedness of the sample into
account, so it incorporates random genetic drift and muta-
tion. This approach makes it very easy to calculate prob-
abilities of a genealogy of a sample of individuals with a
given effective population size, P g . Hudson (1990)
and others showed that we can extend this single popula-
tion approach to multiple populations and estimate migra-
tion rates and also that we can include other forces such as
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Figure 1: A coalescent tree with sampled se-
quences

growth, recombination, and selection.

Markov chain Monte Carlo (MCMC) integration

Construction of random genealogies (Simulation studies) is simple with the coalescent ap-
proach (e.g. the method of Slatkin and Maddison 1989). Inference of parameters is much harder,
especially when we want not to lose any information in the data (Felsenstein 1992). In a likelihood
framework we would like to simply integrate over all possible genealogies G and solve for the
population parameters at the maximum likelihood

L
g G

P g P D g dg (1)

where P D g is the likelihood of the genealogy with the sample data. This is not possible; there
are too many different topologies with different branch lengths. But we can approximate by using
a biased random walk through the genealogy space and then infer the parameters from the sampled
genealogies correcting for the biased sampling:

L
g P g 0 P D g

P g
P g 0

dg (2)

(MCMC: Hammersley and Handscomb 1964, MCMC and coalescence: Kuhner et al. 1996)
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Table 1: Simulation with unequal known parameters of 100 two-locus datasets with 25 individuals
in each population and 500 base pairs (bp) per locus. Std. dev. is the standard deviation.

Population 1 Population 2

4Ne 4Nem 4Ne 4Nem
Truth 0 0500 10 00 0 0050 1 00
Mean 0 0476 8 35 0 0048 1 21
Std. dev. 0 0052 1 09 0 0005 0 15

Two population exchange migrants

We will explore the details of the MCMC mech-
anism in a simple two population model with the pa-
rameters: 1 4N 1

e , 2 4N 2
e , 1 m1 ,

2 m2 (we need to scale by the unknown mu-
tation rate of our data).
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Figure 2: Two population model with population

sizes N 1
e , N 2

e , and migration rates m1, m2.

Assumptions: Population have constant size and exist forever, migration rate is constant
through time, and the genetic markers are neutral.

We can jointly estimate migration rates and population sizes

Example of a simulation study (Table 1), where I generated 100 single locus data sets and
then analyzed them with the program MIGRATE (Beerli 1997).

Problems: perhaps not a natural situation; how long do we need to run the genealogy sam-
pler?

Migration matrix model

Assumptions: same as with 2 populations

Simulation studies with (a) 4 sampled populations and (b) with 3 sampled population and
one population where we don’t have data.

Figure 3: Population structure used in simulations.

Problems: how many genealogies to sample? Number of parameters increases quadratically.

3



Comparison with FST

Simulation studies can show that the ML-estimator delivers better result than FST, and results are
still accurate when population sizes and/or migration rates are unequal (Table 1).

Hypothesis testing using likelihood ratios

The maximum likelihood framework makes it easy to test hy-
potheses. I expect that these tests will supersede standard test
based on FST. I will show a few examples and hope that I am
able to have a version of MIGRATE finished in March so that
everybody can experiment with their own data in the “data sec-
tion”.
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Figure 4: Likelihood ratio test:
dashed areas are outside of the 95%
confidence limit. is 4Ne ; d f 1,
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Data type and mutation rate

We have mutation models for infinite allele model, microsatellite stepwise mutation model
(Valdez and Slatkin 1993, Di Rienzo et al. 1994), and finite sites sequence model (e.g. Swofford
et al. 1996).

What’s the effect of the data type to the estimate of migration rates? The data type is not that
important, for the quality of the migration rate estimates, but the variance of the estimates is depen-
dent on the number of unlinked loci (Fig. 5) having independent coalescent trees and the variability
in the data, the more segregating sites or polymorphic loci are present the better the estimates of
the migration rates.
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Figure 5: Variance of parameter estimates: the dashed area is the 95% confidence area, the
numbers 1, 3, and 10 are the numbers of sampled loci
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Mutation rate is not constant: incorporation of the vari-
ance of the mutation rate is possible by assuming that it
follows a Gamma distribution (Fig. 6) and estimating the
shape parameter of this distribution jointly with the pop-
ulation parameters by integrating over all mutation rates
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Figure 6: Gamma distributed mutation rates,
with different shape parameter and the same
mean
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Summary

Coalescence theory enables us to estimate population parameters by including sample data
and taking the possible histories of the populations into account.

Expansion of the coalescence model to any migration model is possible.

Maximum likelihood ratio test of arbitrary hypotheses.

Multi-locus enzyme electrophoretic data and microsatellite markers delivers good migra-
tion rate estimates compared to mtDNA sequence data, because the quality of the result is
dependent on the number of loci and the variability in the data.

The assumption that the mutation rate over loci is constant is obviously wrong for elec-
trophoretic markers and microsatellites and taking the variation of the mutation rate into
account should improve the estimates of population parameters.
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Software, with emphasis on using the coalescent

[this list is certainly not complete]

LAMARC package [Likelihood Analysis with Metropolis Algorithm using Random Coalenscence.
Three programs are currently available: COALESCE, FLUCTUATE, and MIGRATE. C-source
code and binaries for Windows, Mac, LINUX, DUNIX, NEXTSTEP.
Website at evolution.genetics.washington.edu/lamarc.html

MISAT estimates the effective population size of a single population using microsatellite
data and can also test if the one-step model or a multi-step model is appropriate. Binaries for
Macintosh and Windows.
Website at http://mw511.biol.berkeley.edu/software.html

SITES is a computer program for the analysis of comparative DNA sequence data (Hey and
Wakeley, 1997. A coalescent estimator of the population recombination rate. Genetics 145:
833-846) . C source code and binaries for DOS and Macintosh.
Website at http://heylab.rutgers.edu

UPBLUE is a least square estimator for population size (Fu, Y. X., 1994. An phylogenetic
estimator of effective population size or mutation rate. Genetics 136:685-692). Fortran
program or use the website directly to calculate results
http://www.hgc.sph.uth.tmc.edu/fu/

Calculation of 4Nm using the method of SLATKIN and MADDISON (1989), you need to
calculate the minimal mumber of migration events on the genealogy either by hand or using
MacClade (Maddison and Maddison 1992, Sinauer). Pascal source code.
Website at http://mw511.biol.berkeley.edu/software.html

Several programs for the estimation of population size, exponential growth, recombination
rate, migration rate, time of the last common ancestor. Contact Bob Griffiths (email: ...) for
more information.
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