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Finding molecular variation

Richard Lewontin and Jack Hubby’s 1966 paper on protein variation
(using gel electrophoresis) found many loci to show variation at the

molecular level. It was not obvious that this variation affected fitness.
Lewontin pointed out that this “neutral mutation” might account for much of

the molecular variation within populations.



The neutral mutation theory

Moto Kimura with his family in Mishima, Japan in the 1960s. The greatest
theoretical population geneticist of the late 1900s, he was the chief

advocate for the neutral mutation theory and worked out many of its
consequences.



Lots of variation at the DNA level
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Marty Kreitman, as a student of Lewontin’s in the early 1980s, used early
sequencing methods to look for variation in DNA sequences. Result: you
are heterozygous about every 1500 nucleotides.



A typical locus showing SNP variation
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(From Debbie Nickerson’s SeattleSNPs project). Single-nucleotide
polymorphisms (SNPs) at the Matrix Metalloproteinase 3 locus.




Molecular evolution (1963 on)

Linus Pauling in 1963 Emile Zuckerkandl, more recently



Molecular evolution and phylogeny methods

Population
genetics

People who pioneered in phylogeny methods and the analysis of
molecular evolution data with them.

Biochemistry
(and molecular
biology)
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An example: who is most closely related to whales?
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from Amrine-Madsen, H. et al., 2003, Molecular Phylogenetics and Evolution



Molecular phylogenies

Some examples of other important conclusions from molecular
phylogenies:
Using immunological distances, Morris Goodman (1962 on) and later Wilson and Sarich
(1966) show that humans, gorilla, and chimps were a clade.
Wilson and Sarich (in that work, 1967) date the divergence of humans to 5 million years.

Charles Sibley and Jon Ahlquist (1984) use DNA hybridization to argue for the clade
humans-chimps.

Carl Woese (1978) uses rRNA trees to introduce evolution into microbiology, argue for
the domain Archaea.

Much progress on early radiation of angiosperms

Protostome-deuterostome tree of metazoans (more or less) replaced by
deuterostome-lophotrichozoa-ecdysozoa tree.

Fungi closer to animals than either is to plants.
Symbiotic origin of mitochondria and of chloroplasts verified.
Amphioxus diverged before split of tunicates from craniate chordates.

Lots of horizontal gene transfer in prokaryotes, almost not a tree.



Wen-Hsiung Li




Wen-Hsiung Li's work on gene duplication
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The “mitochondrial Eve” study in 1987

Rebecca Cann, Mark Stoneking, and the late Allan Wilson. In 1987 they
made a molecular tree of mitochondria from humans.



One female ancestor? of what? When? Where?
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My ancestor?

Charles the Great

(Charlemagne)

about 44 more generations
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Chromosome 1, back up one lineage
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Coalescent genealogy for one gene

DIDITICIDITIDIDIDID
DITISISISIITIDITID,
DIDITITIDITIDIDIDID
DIDITITIDITIDIDIDID
DIDITITIDITIDIDIDID
€96 E) ) EIE)E)E) CIE Time
DIDITITIDITIDIDIDID
DIDITICIDITIDIDIDID
DITISISISIITIDITID,
DIDITICIDITIDIDIDID
DITISISISITITIDITID
DIDITITIDITIDIDIDID
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Coalescent genealogy for one gene
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Coalescent genealogy for one gene
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Coalescent genealogy for one gene
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Coalescent genealogy for one gene
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Coalescent genealogy for one gene



Untangling the crossed lines ...

Time




Genealogy of a sample of 3 copies

Time




J. F. C. Kingman’s (1982) “coalescent”

1. start with n tips
2. go back an amount of time

drawn from Exponential ( aN 1))

n(n
join a random pair of the n
n—n-—1
If n =1 stop, else go to step 2.

bk ow

This excellently approximates the distribution of genealogies which arise
from samples from a standard (Wright-Fisher) population genetics model

with a population size of N, provided n? < N



Pioneer of coalescent theory

Dick Hudson, pioneered understanding of coalescents
having recombination or natural selection



A coalescent with recombination
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Coalescents for two loosely-linked genes

locus A
—— locus B
both

= recombination
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Species trees and trees of gene copies
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Species trees and trees of gene copies




Protists and bacteria — a worry

If protist (or bacterial) populations remain large for long periods of time ...

108 generations

population size

10
10

... IS It possible that some apparent horizontal gene transfer events are
actually just species-tree / gene-tree discrepancies due to coalescent
effects? Has this been examined?



Approaches to breaching the species barrier
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Direct assault. Make use of cases where we can cross species or incipient
species. Jerry Coyne, Allen Orr, Nick Barton, etc.

QTLs across species. e.g., Toby Bradshaw and Doug Schemske
Going round the other way. Used inadvertently by people studying molecular
evolution, then coalescents.

- Study of coalescents at time of speciation. Jody Hey, Rich Kliman.

- Synonymous/nonsynonymous comparisons. Masatoshi Nei, Takashi
Gojobori, Ziheng Yang, Rasmus Nielsen, John Huelsenbeck



Between-species and within-species evolutionary work

They are increasingly coming into contact.
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Between-species and within-species evolutionary work

They are increasingly coming into contact.

Signs of this as well in a new wave of work on modelling quantitative
genetics in natural populations

Renewed controversy about models of speciation (Doebeli versus
Gavrilets)

But ... what do we call the event?
The Reunion?

The Final Roundup?
(not The Postneodarwinian Synthesis)
(definitely not The Postmodern Synthesis)



Thousands of SNPs?

SNPs will help integrate the statistical variation within populations,
between populations, and between species.

They will also allow us to connect QTL statistical genetics with
morphological phylogenies

Still, there will be a lot of statistics to do to correct for false positives.
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